Rising Tractor Use in sub-Saharan Africa: Evidence from Tanzania

Agricultural & Applied Economics Association (AAEA) - African Section Washington DC

05 August 2018

D. van der Westhuizen

T.S. Jayne

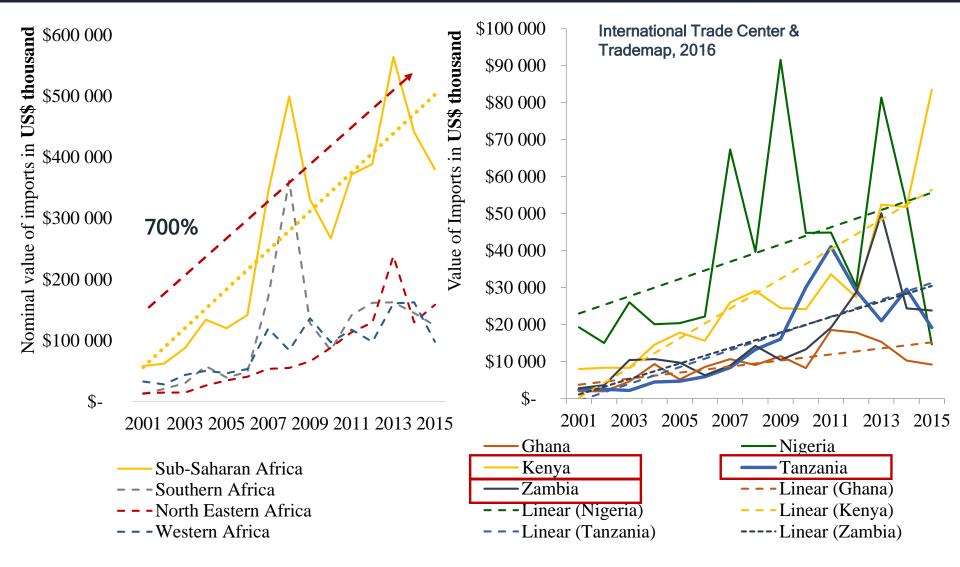
F.H. Meyer

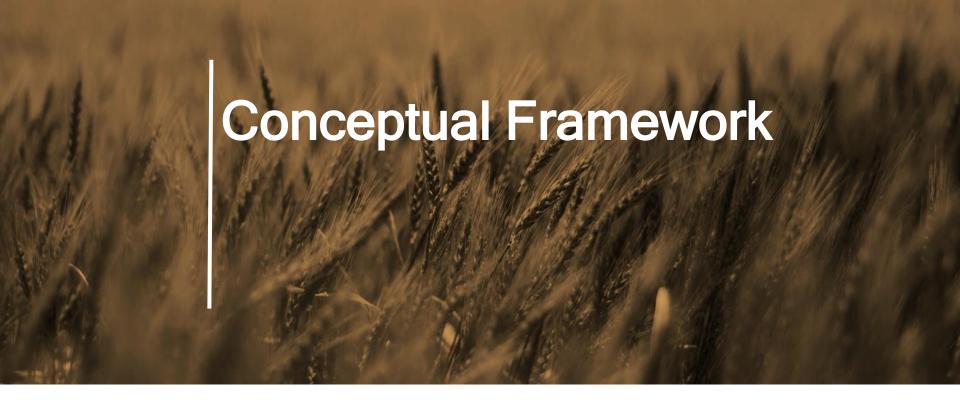
This study was made possible by a number of funders, including the generous support of the Bill and Melinda Gates Foundation

Introduction

 The drivers of rising use of mechanization services on smallholder farms remain poorly understood

Objectives:

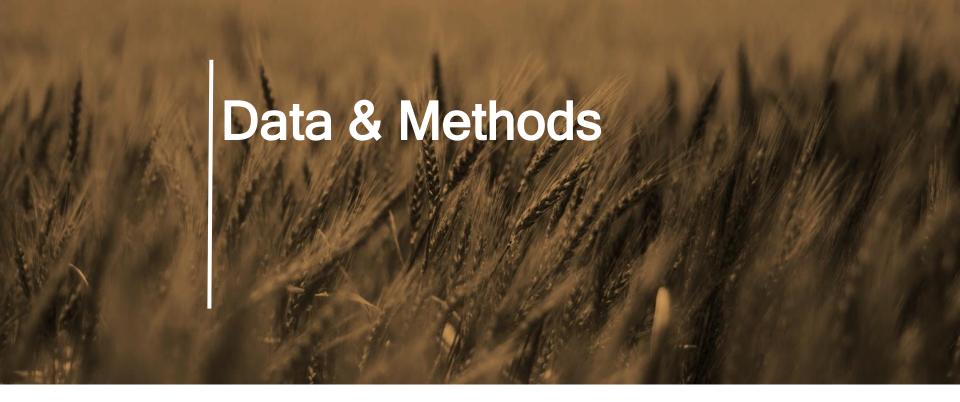

- To identify the factors driving recent rise of mechanization use by small-holder farmers in Tanzania
- To explore the potential role of medium & large-scale farms in promoting a movement to more capital-intensive forms of farming, not only on larger farms but on smallholder farms as well
- To evaluate whether evolving trends in factor use between labor and capital on smallholder farms in Tanzania is consistent with the Hayami-Ruttan Induced Innovation theory


Import Data shows an Increase in Tractor Demand

Nominal value of tractor imports into region is increasing

Causes of Rising Tractor Use in SSA

Causes of Increased Tractor Use


Conceptual Framework: Hayami & Ruttan Induced Innovation

Supply:

- Cost of capital has declined in Africa since 2000, real interest rates lower & penetration of banking into rural areas has improved (Andrianaivo and Yartey, 2009; Ojah and Odongo Kodongo, 2015)
- Many medium-scale farmers own/use tractors. As these farmers expand, there is a growing presence of tractors in rural areas

Demand:

- Rising opportunity cost of farm labor, especially in areas experiencing economic dynamism (Tschirley et al., 2015; Yeboah and Jayne, 2018)
- Shifts in labor force into more diversified, off-farm activities associated with economic transformation (Yeboah & Jayne, 2018)
- Higher global food prices → Incentives to expand area under cultivation
 → Technologies to facilitate area expansion (AGRA, 2016; Jayne et al., 2016; Richards et al., 2016; UN Population prospects, 2017)

Data & Methods

- Tractor importation data for 40 African countries Trademap
- Tanzanian National Panel Survey (NPS) for 2008/09, 2010/11, 2012/13 & 2014/15 (TNBS & World Bank) 9,726 observations for pooled data & 1,672 for HH-level panel)
- Demand function for tractor rental services:
 - 1) Pooled generalized linear model (GLM) probit which provides a flexible generalization of ordinary linear regression
- 2) Mundlak-Chamberlain device (Mundlak 1978; Chamberlain 1984), providing an estimator that Woolridge (2010) refers to as the Correlated Random Effects (CRE) model which address the issue of unobserved heterogeneity at household level
- Ordinary Least Squares (OLS) multiple regression to test induced innovation hypothesis

where Y = % change in the number of HH using tractors: Δ 2008-2010; Δ 2010-2012 Δ 2012-2014 & key variable of interest: Δ in factor price (FP) ratio: Δ 2008-2010; Δ 2010-2012 Δ 2012-2014 where FP ratio = wage rate divided by tractor rental cost

Data & Methods

Model specification: Demand function for tractor rental services

$$P(Y_{tractor_{rent}} = 1 \mid X_k) = f(X, C, R, Y) + \epsilon_i$$

X = household characteristics

C = community characteristics

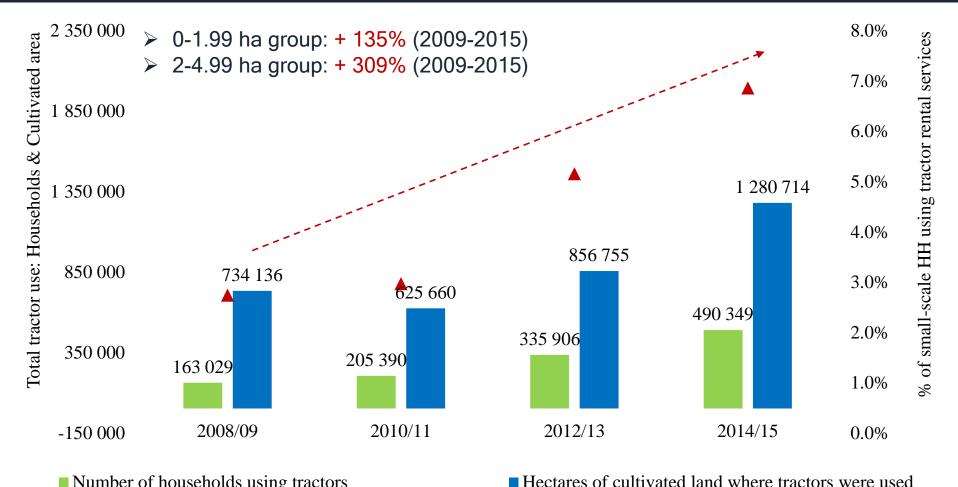
R = region conditions

Y = year dummy variables

for panel estimation $\epsilon_{it} = \alpha_i + \mu_{it}$

- X: household land cultivated, gender & age of household head, asset wealth & market access conditions
- C: local wage rates, fertilizer prices, tractor rental rates, share of MS farms as % of total number of farms in district
- **R**: to regional dummy variables (30 regions)
- Y: survey year dummies (3 for pooled sample; 2 for household panel analysis)

- Changing tractor use in Tanzania
- Shift in rental markets, especially among small-scale producers
- Tractor rental use is concentrated in certain regions

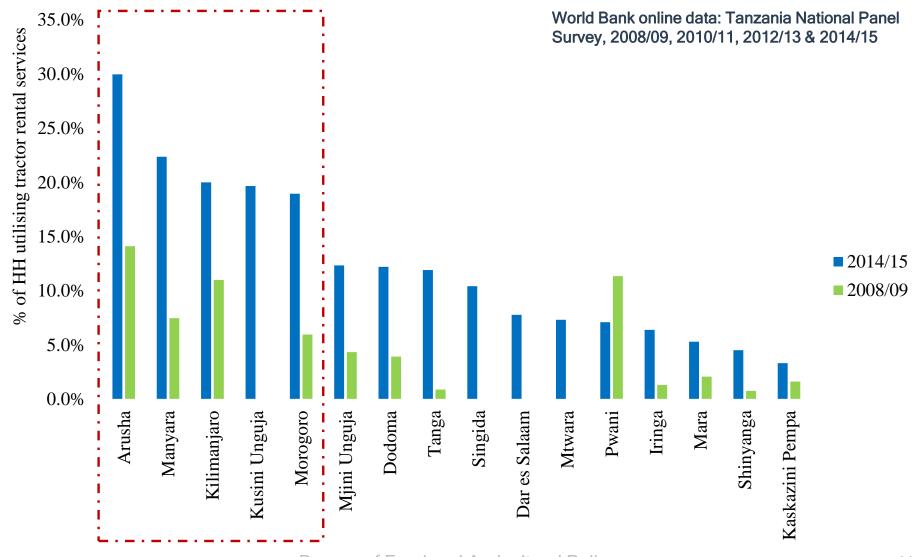


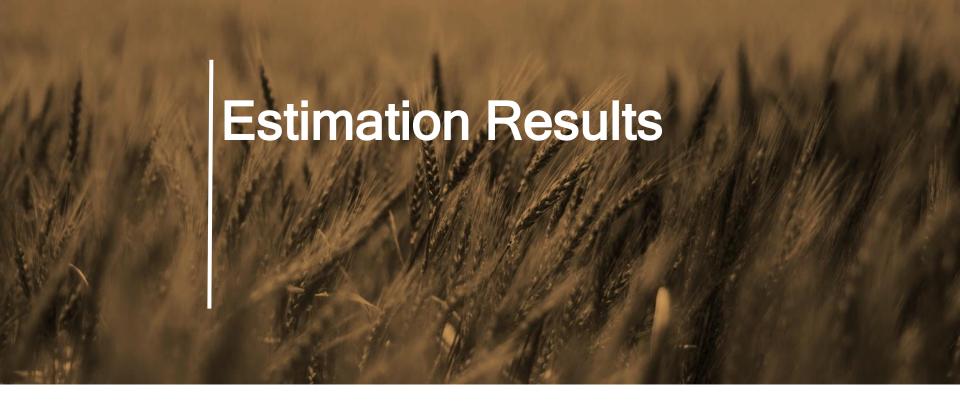
Changing Tractor Use in Tanzania

More households & area using tractors; small-scale farms increasingly using rental services

■ Number of households using tractors

▲ % of small-scale HH using tractor rental services


World Bank online data: Tanzania National Panel Survey, 2008/09, 2010/11, 2012/13 & 2014/15

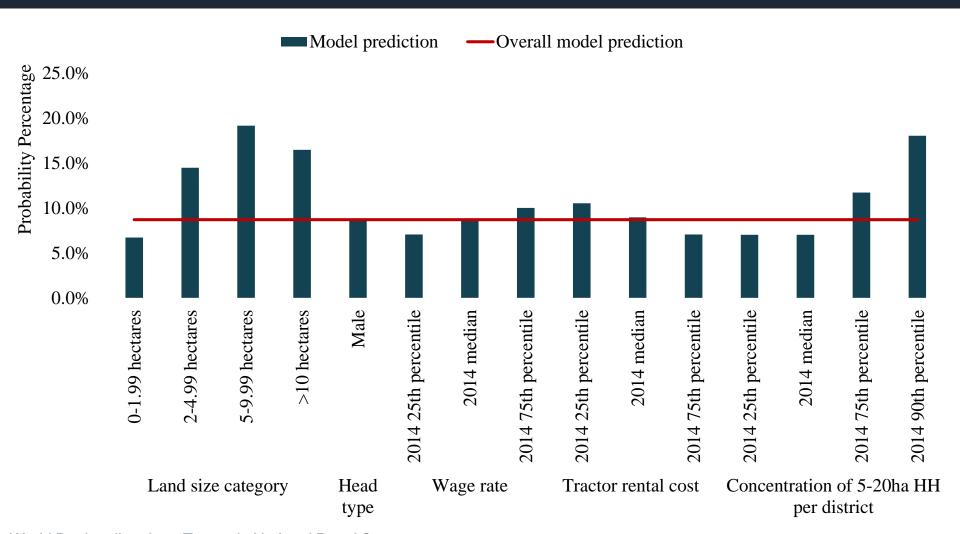

Tractor rental use is concentrated in certain regions

Some regions have experienced higher growth since 2008/09

- Pooled GLM probit
- Mundlak-Chamberlain (MC) indicator / CRE model
- Predicted Probabilities

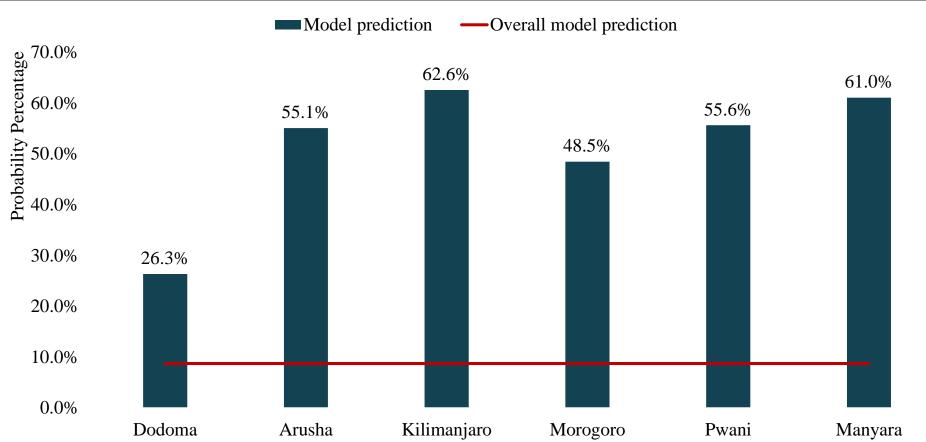
Pooled GLM & MC-CRE Probit Results

Selective output for 4 approaches


Estimation approach	Pooled G	LM Probits	Mundlak-Chamberlain Correlated Random Effects		
Dataset	2% rental regions	2% rental regions	2% tractor rental regions	2% tractor rental regions	
		Limited to HH located		Limited to HH located	
		in 0-5 ha		in 0-5 ha	
Cultivated Land Size Distribution = 2 - 4.99 hectares	0.44***	0.46***	0.33*	0.33*	
Cultivated Land Size Distribution = 5 - 9.99 hectares	0.62***		0.41		
year = 2012/13	0.31***	0.36***	0.50***	0.52***	
year = 2014/15	0.59***	0.64***			
Household head sex: Male	0.24***	0.26***	0.18	0.26	
log_market_dist	0.01	-0.01	-0.20*	-0.18	
log_wage_rate_LP	0.19***	0.19***	0.21***	0.19***	
log_trac_rent_cost	-0.22***	-0.31***	-0.30**	-0.31*	
hh_5_10_ha	4.37***	4.14***	0.63	0.35	
Region = Arusha	0.76***	0.79***	0.95*	1.23**	
Region = Kilimanjaro	0.95***	0.96***	1.00**	1.27**	
Region = Morogoro	0.59***	0.74***	1.44***	1.72***	
Region = Pwani	0.77***	0.79***	1.57*	1.77**	
Region = Manyara	0.91***	1.00***	1.67**	1.85***	
log_maize_price_mean			0.70***	0.63***	
log_trac_rent_cost_mean			-0.80**	-0.83*	
hh_5_10_ha_mean			8.90*	12.21***	
Constant	-3.32***	-2.47**	-0.03	0.02	
Observations	3,728	3,524	1,644	1,564	
pval in parentheses					
*** p<0.01, ** p<0.05, * p<0.1					

Predicted Probability Scenarios

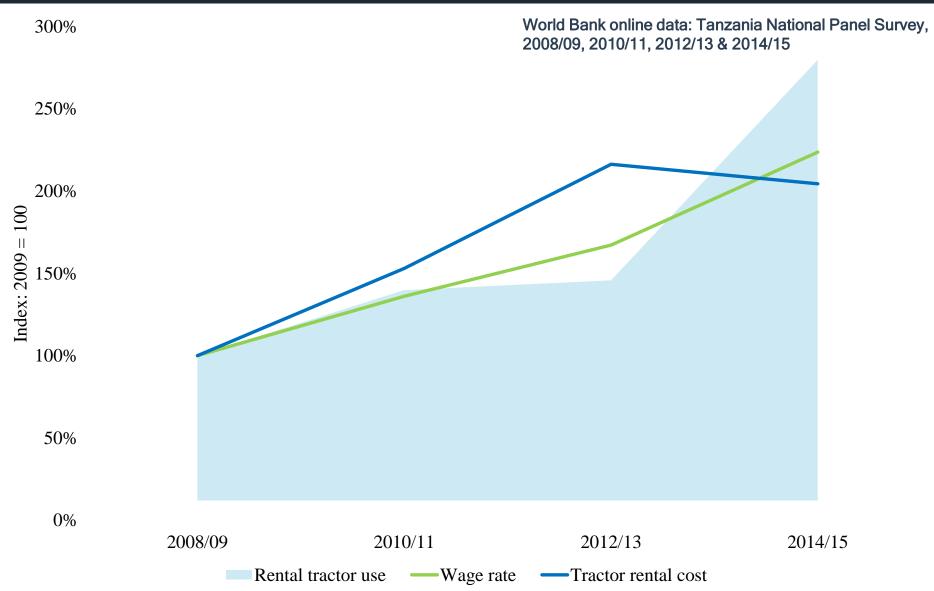
Despite overall low success rate, results change quite substantially as we control for certain variables



World Bank online data: Tanzania National Panel Survey, 2008/09, 2010/11, 2012/13 & 2014/15

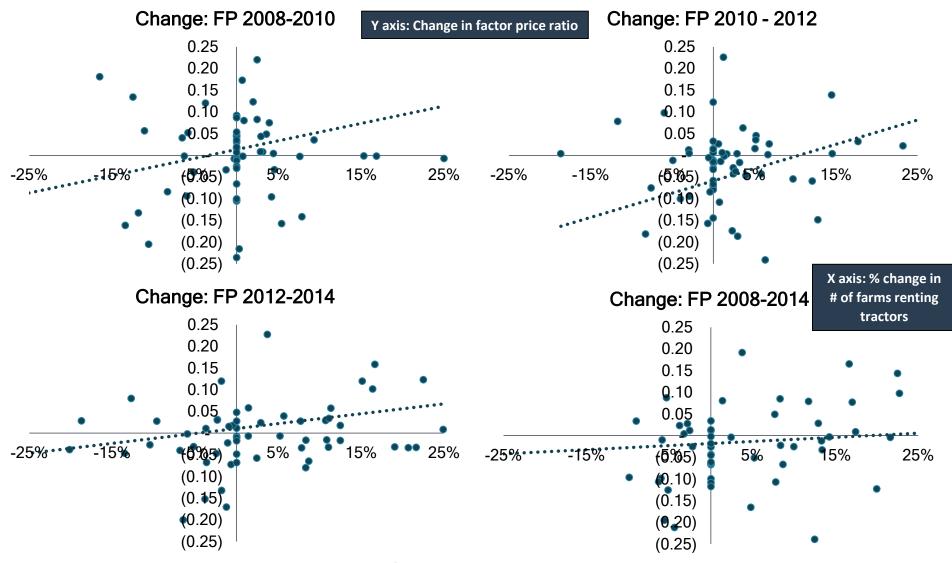
Tractor adoption - Regionally concentrated within specific groups

Predicted probabilities for land size group = 5-9.99; year = 2014, head type = male & concentration of medium-scale producers per district = 2014 median


Predicted probabilities for regions where land size = 4-9.99; year =2014; head type = male & concentration of 0-5 ha producers = 2014 median

World Bank online data: Tanzania National Panel Survey, 2008/09, 2010/11, 2012/13 & 2014/15

Induced Innovation Hypothesis


Mean of median changes in district-level factor prices

Induced Innovation Hypothesis

Relative change in factor prices vs. change in share of farms renting tractors

Induced Innovation Hypothesis Testing

Relative change in factor prices vs. change in share of farms renting tractors

Model Specification to test the induced innovation hypothesis:

Y = % change in the number of HH renting tractors: Δ 2008-2010; Δ 2010-2012 Δ 2012-2014

X1 = Δ in factor price (FP) ratio: Δ 2008-2010; Δ 2010-2012 Δ 2012-2014 where FP ratio = wage rate divided by tractor rental cost

X2 = Household asset wealth (lagged)

X3 = Market distance from household to closest market (lagged)

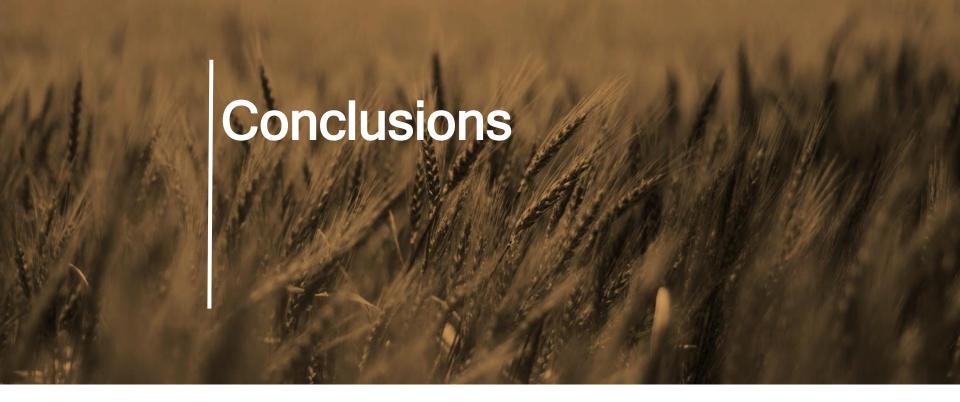
X4 = Quantity maize harvested in kilograms per hectare (lagged)

X5 = Maize price in TZS per kilogram sold (lagged)

X6 = Fertilizer cost in TZS per kilogram of fertilizer (lagged)

X7 = Concentration of 5-10 hectares farming households per district (lagged)

Induced Innovation Hypothesis Testing



Relative change in factor prices vs. change in share of farms renting tractors

OLS Regression Statistics for Change: % change in the number of HH renting tractors: Δ 2008-2010; Δ 2010-2012 Δ 2012-2014

F-test	2.620	Prob(F)	0.012	<u>Unrestricted Model</u>				
MSE ^{1/2}	0.080	CV Regr	560.623	F-test	2.620			
R ²	0.050	Durbin- Watson	2.065	R ²	0.050			
RBar ²	0.031	Rho	-0.036	RBar ²	0.031			
Akaike Information Criterion	-5.034	Goldfeld- Quandt	0.354	Akaike Information Criterion	-5.034			
Schwarz Information Criterion	-4.958			Schwarz Information Criterion	-4.958			
95%	Intercept	Change in Factor Price Ratio	Lag_asset_w ealth	Lag_market_ dist	Lag_qty_har vested	Lag_maize_p rice	Lag_fert_cos t	Lag_hh_5_10 _ha
Beta	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.10
S.E.	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.12
t-test	-0.32	2.98	0.29	-0.97	2.56	1.02	0.50	0.88
Prob(t)	0.75	0.00***	0.77	0.33	0.01***	0.31	0.61	0.38
Elasticity at Mean		-0.026	0.023	-0.348	0.547	0.685	0.270	0.186
Partial Correlation		0.157	0.015	-0.052	0.136	0.056	0.025	0.047

OLS regression indicates significant & positive signs for the change in factor price ratio & quantity of maize harvested on the % change in the number of HH renting tractors

Conclusions

- Concentration of medium-scale farms per district coupled with increased tractor rental use by smallholders
- Landholding size coupled with increased tractor rental use
- Increase in # of households using tractors not limited to larger-scale producers
- Largest increase in tractor rental use was observed in the 2-4.99 and 5-9.99 hectares' land size groups
- Significant regional variation in tractor rental use & adoption
- Estimation results uphold the importance of relative changes in factor prices consistent with the induced innovation hypothesis
- Although overall tractor rentals remain low, it is rising particularly in rural areas experiencing economic transformation

THANK YOU

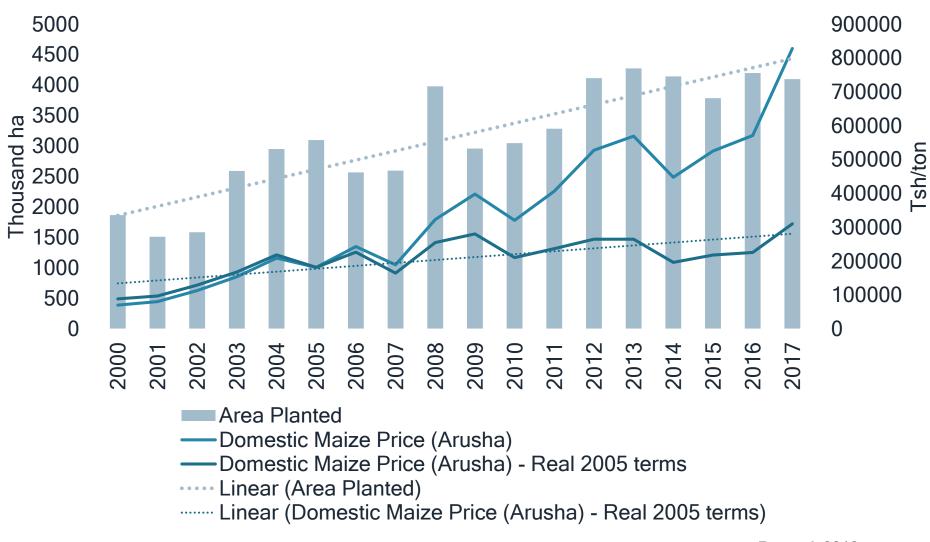
www.bfap.co.za

+27 82 420 6964

divan.vanderwesthuizen@up.ac.za

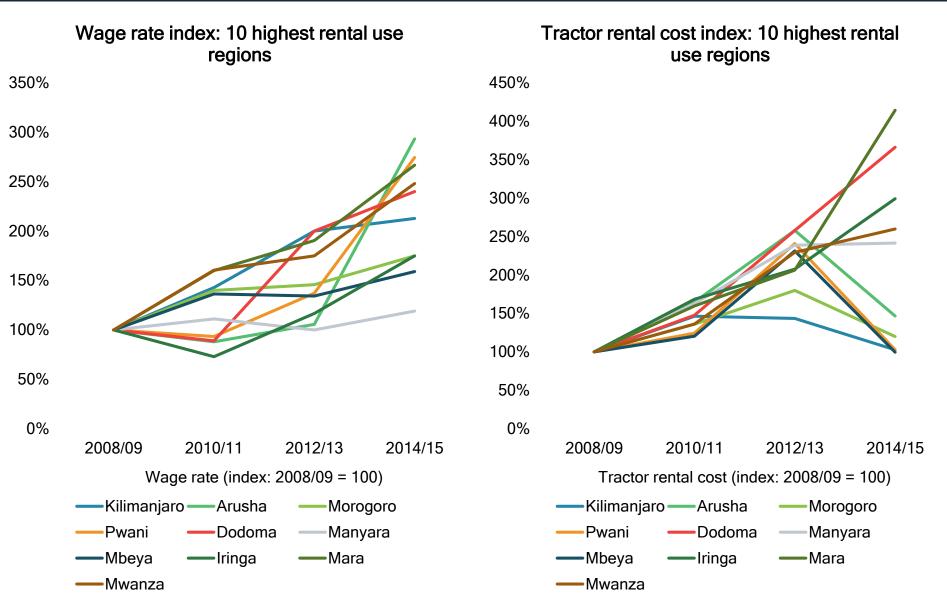
Acknowledgement:

Ayala Wineman for her supportive role & advice in the research



Tanzania Maize Market

BFAP DATA DRIVEN INSIGHT


Area increase & increase in real maize prices

Induced Innovation Hypothesis

